Atmospheric Escape Processes and Planetary Atmospheric Evolution
نویسندگان
چکیده
منابع مشابه
Molecular Dications in Planetary Atmospheric Escape
Fundamental properties of multiply charged molecular ions, such as energetics, structure, stability, lifetime and fragmentation dynamics, are relevant to understand and model the behavior of gaseous plasmas as well as ionosphere and astrophysical environments. Experimental determinations of the Kinetic Energy Released (KER) for ions originating from dissociations reactions, induced by Coulomb e...
متن کاملAtmospheric Escape and Evolution of Terrestrial Planets and Satellites
The origin and evolution of Venus’, Earth’s, Mars’ and Titan’s atmospheres are discussed from the time when the active young Sun arrived at the Zero-Age-Main-Sequence. We show that the high EUV flux of the young Sun, depending on the thermospheric composition, the amount of IR-coolers and the mass and size of the planet, could have been responsible that hydrostatic equilibrium was not always ma...
متن کاملAtmospheric Escape at Mars
Introduction: Several mechanisms have been identified to result in escape of the Martian atmosphere. These mechanisms can be divided in two groups [1]: • Thermal escape or Jeans escape, which corresponds to the loss of atoms in the high energy tail of the energy distribution at the exobase. This mechanism is important only for the light species such as hydrogen or deuterium. • Non-thermal escap...
متن کاملAtmospheric escape from hot Jupiters
The extra-solar planet HD209458b has been found to have an extended atmosphere of escaping atomic hydrogen (Vidal-Madjar et al. 2003), suggesting that “hot Jupiters” closer to their parent stars could evaporate. Here we estimate the atmospheric escape (so called evaporation rate) from hot Jupiters and their corresponding life time against evaporation. The calculated evaporation rate of HD209458...
متن کاملAtmospheric and Surface Contributions to Planetary Albedo
The planetary albedo is partitioned into a component due to atmospheric reflection and a component due to surface reflection by using shortwave fluxes at the surface and top of the atmosphere in conjunction with a simple radiation model. The vast majority of the observed global average planetary albedo (88%) is due to atmospheric reflection. Surface reflection makes a relatively small contribut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geophysical Research: Space Physics
سال: 2020
ISSN: 2169-9380,2169-9402
DOI: 10.1029/2019ja027639